Realization of direct trivial-SPT transition of bosons with $\mathrm{U}(1) \mathrm{xU}(1)$ symmetry and relation to exactly self-dual easy-plane NCCP1 model

Lesik Motrunich (Caltech)
with Scott Geraedts
[PRB 96, 115137 (2017); (2011-2013)]

Outline

* Review of lattice $(2+1)$ d boson-vortex duality and some successes
* Realization of direct transition between trivial and SPT (integer quantum Hall) phases of bosons with $U(1) x U(1)$ symmetry
- Hamiltonian formulation, Euclidean action model, phase diagrams and SPT \& SET phases
- direct transition from trivial phase to Integer Quantum Hall phase
- symmetries of the model
- special non-local particle-hole-like symmetry
- relation to exactly-self-dual easy-plane NCCP1 model
- variations
* Conclusions and future directions

Thinking in terms of vortices in $(2+1) \mathrm{d}$

Particle picture: worldlines of bosons

Dual picture in $(2+1) \mathrm{d}$: worldlines of vortices

Superfluid phase:
condensed bosons (proliferated worldlines)

gapped vortices (small worldlines)

Mott insulator phase:
gapped bosons

proliferated vortices

Successes of thinking in terms of vortices

* Not as successful for describing the phase superfluid-insulator transition in (2+1)d, BUT ...
* Very successful for describing non-trivial insulating phases, including with topological order
- Fractional Quantum Hall systems ("vortex" thinking implicit or explicit;
e.g. Chern-Simons flux attachment ~ "vortex attachment")
$-Z_{2}$ fractionalized phase from pair-vortex condensation
- Insulators with intricate CDW or VBS order from more complex vortex condensations with non-zero wavevectors
* Recent successes in symmetry-protected topological phases:
- SPT (Integer Quantum Hall effect) phases of bosons
- SET (fractionalized cousins of SPT) phases of bosons

Precise "duality" transform on a (2+1)D lattice

 (Peskin; Halperin \& Dasgupta; Fisher \& Lee)

> "hydrodynamic" real- valued representation of the boson 3-current
conserved integer-valued 3-currents of bosons on a direct cubic lattice
conserved integer-valued 3-currents of vortices on a dual cubic lattice

$$
\begin{aligned}
& Z=\sum_{\vec{J}, \vec{\nabla} \cdot \vec{J}=0, \vec{J}_{\mathrm{tot}}=0} e^{-\frac{1}{2} \sum_{k} v(k)|\vec{J}(k)|^{2}}=\sum_{\vec{Q}, \vec{\nabla} \cdot \vec{Q}=0, \vec{Q}_{\mathrm{tot}}=0} e^{-\frac{1}{2} \sum_{k} \frac{(2 \pi)^{2}}{v(k)\left|\vec{f}_{k}\right|^{2}}|\vec{Q}(k)|^{2}} \equiv \sum_{\mu}\left(2-2 \cos k_{\mu}\right) \approx \vec{k}^{2} \\
& \text { Short-range-interacting bosons - " } \phi^{4 \prime \prime} \text { theory }
\end{aligned}
$$

$\mathcal{L}_{\text {bos }}=\left|\left(\vec{\nabla}-i \overrightarrow{A^{\text {ext }}}\right) \Psi_{\text {bos }}\right|^{2}+m_{\text {bos }}\left|\Psi_{\text {bos }}\right|^{2}+u_{\text {bos }}\left|\Psi_{\text {bos }}\right|^{4} \sim i \overrightarrow{\text { bus }} \cdot \vec{A} \vec{A}^{\text {ext }}+\ldots$
Long-range-interacting vortices - "Higgs model"
$\mathcal{L}_{\text {vort }}=\left|(\vec{\nabla}-i \vec{a}) \Psi_{v}\right|^{2}+m_{v}\left|\Psi_{v}\right|^{2}+u_{v}\left|\Psi_{v}\right|^{4}+K(\vec{\nabla} \times \vec{a})^{2}+i \frac{\vec{\nabla} \times \vec{a}}{2 \pi} \cdot \vec{A}^{\mathrm{ext}} \sim i \vec{Q} \cdot \vec{a}+i \frac{\vec{\nabla} \times \vec{a}}{2 \pi} \cdot \vec{A}^{\mathrm{ext}}+\ldots$

SPT/SET phases of bosons in (2+1)D in four lines

(Chen et al; Lu \& Vishwanath; Senthil \& Levin; Geraedts \& OIM)
Two species of bosons [U(1)xU(1)]; use dual description for species-1:

$$
\mathcal{L}_{\text {vort-1 }}=\left|(\vec{\nabla}-i \vec{a}) \Psi_{1, \text { vort }}\right|^{2}+m_{1 v}\left|\Psi_{1, \text { vort }}\right|^{2}+i \frac{\vec{\nabla} \times \vec{a}}{2 \pi} \cdot \vec{A}_{1}^{\mathrm{ext}}+\ldots
$$

and direct description for species-2:

$$
\mathcal{L}_{\text {bos }-2}=\left|\left(\vec{\nabla}-i \vec{A}_{2}^{\text {ext }}\right) \Psi_{2, \text { bos }}\right|^{2}+m_{2, \text { bos }}\left|\Psi_{2, \text { bos }}\right|^{2}+\ldots
$$

Consider phase where individual $\Psi_{1, \text { vort' }} \Psi_{2, \text { bos }}$ are gapped, while the composite $\Phi \sim\left(\Psi_{1, \text { oort }}\right)^{d}\left(\Psi_{2, \text { bos }}\right)^{\text {c }}$ condensed

$$
\mathcal{L}_{\text {composite }}=\left|\left[\vec{\nabla}-i\left(d \vec{a}+c \vec{A}_{2}^{\text {ext }}\right)\right] \Phi\right|^{2}+m_{\Phi}|\Phi|^{2}+\ldots
$$

Φ condensed:

$$
\vec{a} \approx-\frac{c}{d} \vec{A}_{2}^{\mathrm{ext}} \quad \Longrightarrow \quad S_{\mathrm{eff}}\left[\vec{A}_{1}^{\mathrm{ext}}, \vec{A}_{2}^{\mathrm{ext}}\right]=-i \frac{c}{d} \frac{\vec{\nabla} \times \vec{A}_{2}^{\mathrm{ext}}}{2 \pi} \cdot \vec{A}_{1}^{\mathrm{ext}}
$$

- integer (SPT) Quantum Hall effectof bosons if $d=1$
- fractional (SET) if d>1

Exact lattice realization of SPT and SET phases of bosons with $U(1) \times U(1)$ symmetry

Setup: Two separately conserved species of bosons [U(1)xU(1)]; at integer density ("relativistic"; enforced by unitary particle-hole)

Hamiltonian formulation (Geraedts \& OIM 2013):

* Species-1: quantum rotors on "direct" lattice \mathbf{r}
$\left[\hat{\phi}_{1}(\mathbf{r}), \hat{n}_{1}\left(\mathbf{r}^{\prime}\right)\right]=i \delta_{\mathbf{r}, \mathbf{r}^{\prime}}, \quad \phi_{1}(\mathbf{r}) \in[0,2 \pi], \quad n_{1}(\mathbf{r}) \in \mathbb{Z}$
* Species-2: quantum rotors on "dual" lattice R
* Harmonic oscillators at intersection points of direct and dual lattice links

$$
\left[\hat{\chi}_{\ell}, \hat{\pi}_{\ell^{\prime}}\right]=i \delta_{\ell, \ell^{\prime}}, \quad \chi_{\ell} \in \mathbb{R}, \quad \pi_{\ell} \in \mathbb{R}
$$

$\hat{\chi}_{\ell}\left(\hat{\pi}_{\ell}\right)$ will affect hopping of the species- 1 (species-2) as if they were "gauge fields": Note, however, that they are regular oscillators with finite "gap" and not gauge fields!

$$
\begin{aligned}
& \ell=\langle\mathbf{r}, \mathbf{r}+\hat{j}\rangle=\left\langle\mathbf{R}, \mathbf{R}+\hat{j}^{\prime}\right\rangle \\
& \hat{\alpha}_{1 j}(r)=\chi_{\ell}, \\
& \hat{\alpha}_{2 j^{\prime}}(R)=\left\{\begin{array}{c}
\hat{\pi}_{\ell} \text { if } \hat{j}^{\prime}=\hat{x} \\
-\hat{\pi}_{\ell}
\end{array} \text { if } \hat{j}^{\prime}=\hat{y}\right.
\end{aligned}
$$

Hamiltonian formulation \& Euclidean path integral

$$
\begin{aligned}
& \hat{H}=\hat{H}_{h 1}+\hat{H}_{h 2}+\hat{H}_{u 1}+\hat{H}_{u 2}+\hat{H}_{\alpha} \\
& \hat{H}_{h 1}=-\sum_{\mathbf{r}, j} h_{1} \cos \left[\nabla_{j} \hat{\phi}_{1}(\mathbf{r})-\sqrt{\frac{2 \pi}{\eta}} \hat{\alpha}_{1 j}(\mathbf{r})\right] \leftarrow \text { ties "flux" of } \alpha_{1} \text { to } \\
& \text { vorticity in } \phi_{1}
\end{aligned}
$$

Euclidean space-time path integral (upon integrating out oscillator fields):

$$
\begin{aligned}
S= & \frac{1}{2} \sum_{k} v_{1}(k)\left|\overrightarrow{\mathcal{J}}_{1}(k)\right|^{2}+\frac{1}{2} \sum_{k} v_{2}(k)\left|\overrightarrow{\mathcal{J}}_{2}(k)\right|^{2}+i \sum_{k} w(k)\left[\vec{\nabla} \times \overrightarrow{\mathcal{J}}_{1}\right](-k) \cdot \overrightarrow{\mathcal{J}}_{2}(k) \\
& v_{1 / 2}(k)=\frac{\lambda_{2 / 1}}{\lambda_{1} \lambda_{2}+\eta^{2}\left|\vec{f}_{k}\right|^{2} /(2 \pi)^{2}}+\frac{1}{2 h_{1 / 2} \delta \tau}, \quad \lambda_{\sigma}=\delta \tau \kappa_{\sigma} \eta /(2 \pi)=1 /\left(\delta \tau u_{\sigma}\right) \\
& w(k)=\frac{-\eta}{2 \pi} \frac{1}{\lambda_{1} \lambda_{2}+\eta^{2}\left|\vec{f}_{k}\right|^{2} /(2 \pi)^{2}} .
\end{aligned}
$$

Mixed vortex-boson representation \&

 SPT via condensation of vortex-boson bound state Dualize $J_{1} \rightarrow Q_{1}$ while leaving J_{2} untouched (simple for very large $h_{1,2}$):$$
S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left(\overrightarrow{\mathcal{J}}_{2}(R)-\eta \overrightarrow{\mathcal{Q}}_{1}(R)\right)^{2}
$$

$\underline{\eta}=0$ - two species decouple
$\left[v_{1 / 2}(k)=1 / \lambda_{1 / 2}, w=0\right]$

Simple fractional $\eta=1 / \mathrm{d}$ (e.g. $\eta=1 / 3$)

$$
S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left(\overrightarrow{\mathcal{J}}_{2}(R)-\frac{1}{3} \overrightarrow{\mathcal{Q}}_{1}(R)\right)^{2}
$$

Very small $\lambda_{1 / 2}<\lambda_{c} / 9$

- condensate of $Q_{1}=3 J_{2}$ bound states

Intermediate $\lambda_{c} / 9<\lambda_{1 / 2}<\lambda_{c}$

- condensate of individual Q_{1}
(\& gapped J ${ }_{2}$)

More complex rational example: $\eta=2 / 5$ - hierarchy of fractionalized phases

$$
S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left(\overrightarrow{\mathcal{J}}_{2}(R)-\frac{2}{5} \overrightarrow{\mathcal{Q}}_{1}(R)\right)^{2}
$$

Very small $\lambda_{1 / 2}<\lambda_{\mathrm{c}} / 25$

- condensate of
$\left(Q_{1}, J_{2}\right)=(5,2)$ bound states

Small to Intermediate $\lambda_{c} / 25<\lambda_{1 / 2}<\lambda_{c} / 4$

- condensate of $\left(Q_{1}, J_{2}\right)=(2,1)$ bound states

Phase diagram: cuts at fixed η

* For all η, the trivial insulator persists in the window $\lambda_{c} / 4<\lambda_{1 / 2}<\lambda_{c}$ (topo phase requires at least $Q_{1}=2$), but is compressed towards $\lambda_{1}=\lambda_{2}$ line * $\eta=1 / 2$ - similar to $\eta=1 / \mathrm{d}$ (e.g., there is topo phase at small $\lambda_{1 / 2}$) except that in our model the trivial phase collapses to a line, which we found to be $1^{\text {st }}$-order transition (Geraedts and OIM 2011)
* $\eta>1 / 2$ - phase diagrams can be obtained from $\eta<1 / 2$ using change of vars. $J_{2}{ }^{\prime}=Q_{1}-J_{2}$. Under this $J_{2}-\eta Q_{1}=(1-\eta) Q_{1}-J_{2}{ }^{\prime}-$ relates models at η and $\eta^{\prime}=1-\eta$. This relates phases with physical Hall conductivities $\sigma_{x y}$ and $2-\sigma_{x y}$

Careful look at symmetries: what allowed exact knowledge of the transition?

$$
S_{J J}=\frac{1}{2} \sum_{k} v_{1}(k)\left|\overrightarrow{\mathcal{J}}_{1}(k)\right|^{2}+\frac{1}{2} \sum_{k} v_{2}(k)\left|\overrightarrow{\mathcal{J}}_{2}(k)\right|^{2}+i \sum_{k} w(k)\left[\vec{\nabla} \times \overrightarrow{\mathcal{J}}_{1}\right](-k) \cdot \overrightarrow{\mathcal{J}}_{2}(k)
$$

* Unitary particle-hole C: $J_{s} \rightarrow-J_{s}$ (fixes to "integer density")
* Anti-unitary $\mathrm{T}_{-+}: \mathrm{J}_{1} \rightarrow-\mathrm{J}_{1}, \mathrm{~J}_{2} \rightarrow \mathrm{~J}_{2}$, $\mathrm{i}->-\mathrm{i}$ (NOT usual time reversal; allows non-zero $\sigma_{\mathrm{xy}}{ }^{12}$; allows Monte Carlo simulations)
* Species interchange symm. if $\mathrm{v}_{1}=\mathrm{v}_{2}$ (smth we can require-need for direct transition)

Mixed vortex-boson vars: $S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\overrightarrow{\vec{k}}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left(\overrightarrow{\mathcal{J}}_{2}(R)-\eta \overrightarrow{\mathcal{Q}}_{1}(R)\right)^{2}$

* Property of "invariance" under $\eta \rightarrow 1-\eta, J_{2} \rightarrow Q_{1}-J_{2}$ - NOT a symmetry as it relates models with different η (reminiscent of particle-hole transformation of electrons in the lowest Landau level).
- At $\eta=1 / 2$, it can be viewed as a symmetry of the model and is responsible for putting the model exactly at the transition!
- This transformation is particle-hole-like ("-" in front of J_{2}), is simple to state in S_{oj} but (nearly) impossible in the boson vars S_{J} - "non-local"? Expect that it is anti-unitary since Q_{1} is unchanged.

Non-local particle-hole-like symmetry in the Hamiltonian formulation?

The current loop model that gave "nice" S_{oj} with nice "particle-hole-like" transformation was obtained in the limit of very large (infinite) $h_{1,2}$

$$
\begin{aligned}
\hat{H}_{h 1} & =-\sum_{\mathbf{r}, j} h_{1} \cos \left[\nabla_{j} \hat{\phi}_{1}(\mathbf{r})-\sqrt{4 \pi} \hat{\alpha}_{1 j}(\mathbf{r})\right] \\
\hat{H}_{h 2} & =-\sum_{\mathbf{R}, j} h_{2} \cos \left[\nabla_{j} \hat{\phi}_{2}(\mathbf{R})-\sqrt{4 \pi} \hat{\alpha}_{2 j}(\mathbf{R})\right]
\end{aligned}
$$

\leftarrow specialized to $\eta=1 / 2$;
the two terms commute

Very large (infinite) $h_{1,2} \rightarrow$ define restricted Hilbert space by

$$
\exp \left(i\left[\nabla_{j} \hat{\phi}_{1}(\mathbf{r})-\sqrt{4 \pi} \hat{\alpha}_{1 j}(\mathbf{r})\right]\right)=1, \quad \exp \left(i\left[\nabla_{j} \hat{\phi}_{2}(\mathbf{R})-\sqrt{4 \pi} \hat{\alpha}_{2 j}(\mathbf{R})\right]\right)=1
$$

In this restricted Hilbert space

$$
\sqrt{4 \pi}\left(\boldsymbol{\nabla} \wedge \hat{\boldsymbol{\alpha}}_{1}\right)(\mathbf{R})=-2 \pi Q_{1}(\mathbf{R}), \quad \sqrt{4 \pi}\left(\boldsymbol{\nabla} \wedge \hat{\boldsymbol{\alpha}}_{2}\right)(\mathbf{r})=-2 \pi Q_{2}(\mathbf{r}), \quad Q_{1}, Q_{2} \in \mathbb{Z}
$$

The u-terms have the form

$$
\hat{H}_{u 1}=u_{1}\left[\hat{n}_{1}(\mathbf{r})+\frac{1}{\sqrt{4 \pi}}\left(\nabla \wedge \hat{\boldsymbol{\alpha}}_{2}\right)(\mathbf{r})\right]^{2}=u_{1}\left[\hat{n}_{1}(\mathbf{r})-\frac{1}{2} Q_{2}(\mathbf{r})\right]^{2}, \quad \hat{H}_{u 2}=u_{2}\left[\hat{n}_{2}(\mathbf{R})-\frac{1}{2} Q_{1}(\mathbf{R})\right]^{2}
$$

- invariant under $\quad n_{1} \rightarrow Q_{2}-n_{1}, \quad n_{2} \rightarrow Q_{1}-n_{2}$

Resembles PH symmetry of electrons in the LLL (very large $h_{1,2}$ is "quenching" the boson kinetic energy) but works only at $\eta=1 / 2$

Relation of $\eta=1 / 2$ to exactly-self-dual "easy-plane NCCP1"

$$
S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left(\overrightarrow{\mathcal{J}}_{2}(R)-\frac{1}{2} \overrightarrow{\mathcal{Q}}_{1}(R)\right)^{2}
$$

Change of vars in the partition sum: $\overrightarrow{\mathcal{Q}}_{1}=\overrightarrow{\mathcal{L}}_{1}+\overrightarrow{\mathcal{L}}_{2}, \quad \overrightarrow{\mathcal{J}_{2}}=\overrightarrow{\mathcal{L}_{2}}$

$$
\begin{aligned}
S_{L L}\left[\overrightarrow{\mathcal{L}}_{1}, \overrightarrow{\mathcal{L}}_{2}\right]=S_{Q J}\left[\overrightarrow{\mathcal{L}}_{1}+\overrightarrow{\mathcal{L}}_{2}, \overrightarrow{\mathcal{L}}_{2}\right] & =\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{L}}_{1}(k)+\overrightarrow{\mathcal{L}}_{2}(k)\right|^{2}+\sum_{R} \frac{1}{8 \lambda_{2}}\left(\overrightarrow{\mathcal{L}}_{2}(R)-\overrightarrow{\mathcal{L}}_{1}(R)\right)^{2} \\
& =\frac{1}{2} \sum_{k}\left[v_{+}(k)\left|\overrightarrow{\mathcal{L}_{1}}(k)+\overrightarrow{\mathcal{L}}_{2}(k)\right|^{2}+v_{-}(k)\left|\overrightarrow{\mathcal{L}_{2}}(k)-\overrightarrow{\mathcal{L}}_{1}(k)\right|^{2}\right]
\end{aligned}
$$

Long-range $v_{+}(k) \sim 1 / k^{2} \&$ short-range $v(k)$ - the structure is qualitatively the same as EP-NCCP1 with (Euclidean) Lagrangian (OIM \& Vishwanath; Senthil et al)

$$
i\left(\overrightarrow{\mathcal{L}}_{1}+\overrightarrow{\mathcal{L}}_{2}\right) \cdot \vec{a}+K(\vec{\nabla} \times \vec{a})^{2}+\text { s.r.int. }
$$

* Original boson unitary particle-hole $C: L_{s} \rightarrow-L_{s}$
* Original boson anti-unitary $T_{-+}: L_{s} \rightarrow L_{s}$, $i->-i$
* Original $\eta=1 / 2$ produced $S_{L L}$ symmetric under $L_{1} \leftrightarrow L_{2}$ interchange; invariance of $S_{0 j}$ under $J_{2} \rightarrow Q_{1}-J_{2}, Q_{1} \rightarrow Q_{1}$ equivalent to symm. of $S_{L L}$ under $L_{1} \leftrightarrow L_{2}$

Relation to exactly-self-dual "easy-plane NCCP1"

$$
S_{L L}\left[\overrightarrow{\mathcal{L}}_{1}, \overrightarrow{\mathcal{L}}_{2}\right]=\frac{1}{2} \sum_{k}\left[v_{+}(k)\left|\overrightarrow{\mathcal{L}}_{1}(k)+\overrightarrow{\mathcal{L}}_{2}(k)\right|^{2}+v_{-}(k)\left|\overrightarrow{\mathcal{L}}_{2}(k)-\overrightarrow{\mathcal{L}}_{1}(k)\right|^{2}\right]
$$

Duality transformation from L_{1}, L_{2} to M_{1}, M_{2} gives

$$
\begin{aligned}
S_{M M}\left[\overrightarrow{\mathcal{M}}_{1}, \overrightarrow{\mathcal{M}}_{2}\right]=\frac{1}{2} \sum_{k} & {\left[\frac{\pi^{2}}{v_{+}(k)\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{M}}_{1}(k)+\overrightarrow{\mathcal{M}}_{2}(k)\right|^{2}+\frac{\pi^{2}}{v_{-}(k)\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{M}}_{2}(k)-\overrightarrow{\mathcal{M}}_{1}(k)\right|^{2}\right] } \\
& \text { short-range if } \mathrm{v}_{+}(\mathrm{k}) \text { is long-range } \quad \text { long-range if } \mathrm{v}(\mathrm{k}) \text { is short-range }
\end{aligned}
$$

$\mathrm{S}_{\text {MM }}$ theory has qualitatively similar structure as S_{LL} up to change of sign of one of the currents (OIM \& Vishwanath). "Exact self-duality" in the sense

$$
S_{M M}\left[M_{1}, M_{2}\right]=S_{L L}\left[M_{2},-M_{1}\right]
$$

can be achieved if

$$
v_{+}(k) v_{-}(k)=\pi^{2} /|k|^{2}
$$

* Original boson interchange symmetry $\lambda_{1}=\lambda_{2} \rightarrow$ exact EP-NCCP1 self-duality. Our model at $\eta=1 / 2 \& \lambda_{1}=\lambda_{2}<->$ exactly-self-dual EP-NCCP1!

Future directions

* The original model that was the simplest to simulate showed first-order transition. However, whole class of models with $v_{+}(k) v(k)=\pi^{2} /|k|^{2}$ are also exactly at the transition - harder but worthwhile to study in Monte Carlo.
- Recent QMC studies of bosonic SPT-trivial transition and easy-plane VBS-superfluid transition find $2^{\text {nd }}$-order transitions(Slagle, You, \& Xu; Qi et al)
- EP NCCP1 model is also related to exactly-self-dual fermionic $N_{f}=2$ QED3 (Wang et al, Benini et al, Mross et al)
* Models with direct transition but without non-local particle-hole symm. "emergent interchange symmetry" between L_{1} and L_{2} in the NCCP1? ~ "emergent non-local particle-hole symm" at the trivial-BIQHE transition?
* (Non-relativistic) Bosons at finite density in external field - can realize SPT \& SET phases in such models as well; strong constraints on allowed $\sigma_{x y}$. He et al: direct transition between $\sigma_{x y}=2$ and $\sigma_{x y}=-2 \&$ proposal of (NCCP1) ${ }^{2}$ criticality. So far, our models go through intermediate phases.
* Lattice duality in the NCCP1 model without assuming easy-plane?

Variation: are local symmetries enough for direct transition?

(Probably) YES - motivated by observation of direct bosonic trivial-SPT transition in the Hubbard on bilayer honeycomb (Slagle, You, \& Xu; Qi et al. - different model with many symmetries)

In our models, if $v_{1}=v_{2}$, then by the boson interchange symmetry we cannot pass through phase (J_{1} superfluid, J_{2} insulating) or (J_{1} insulating, J_{2} superfluid) - except their meeting line (coexistence or $2^{\text {nd }}-0 r d e r$). It is then natural to expect direct transition from trivial to BIQH. Without the non-local symmetry we do not know the exact critical point, but can search numerically.

Question: What does this correspond to in the variables that gave us EP-NCCP1 model?
$S_{L L}\left[\overrightarrow{\mathcal{L}}_{1}, \overrightarrow{\mathcal{L}}_{2}\right]=\frac{1}{2} \sum_{k}\left[\frac{(2 \pi)^{2}}{v_{1}(k)\left|\overrightarrow{f_{k}}\right|^{2}}\left|\overrightarrow{\mathcal{L}}_{1}(k)+\left(1+\frac{w(k)\left|\vec{f}_{k}\right|^{2}}{2 \pi}\right) \overrightarrow{\mathcal{L}}_{2}(k)\right|^{2}+v_{2}(k)\left|\overrightarrow{\mathcal{L}}_{2}(k)\right|^{2}\right] ;$
$S_{M M}\left[\overrightarrow{\mathcal{M}}_{1}, \overrightarrow{\mathcal{M}}_{2}\right]=\frac{1}{2} \sum_{k}\left[v_{1}(k)\left|\overrightarrow{\mathcal{M}}_{1}(k)\right|^{2}+\frac{(2 \pi)^{2}}{v_{2}(k)\left|\overrightarrow{f_{k}}\right|^{2}}\left|\overrightarrow{\mathcal{M}}_{2}(k)-\left(1+\frac{w(k)\left|\vec{f}_{k}\right|^{2}}{2 \pi}\right) \overrightarrow{\mathcal{M}}_{1}(k)\right|^{2}\right]$

Variation: are local symmetries enough for direct transition?

Original species interchange symmetry if $v_{1}=v_{2} \rightarrow$ exact self-duality in the sense

$$
S_{M M}\left[M_{1^{\prime}}, M_{2}\right]=S_{L L}\left[M_{2^{\prime}}-M_{1}\right]
$$

Without the non-local particle-hole symmetry, the S_{L} is not symmetric under $L_{1} \leftrightarrow L_{2}$ interchange - NOT the original EP NCCP1 model. Nevertheless, the above self-duality implies that energetics of M_{1} is identical to energetics of L_{2} and hence guarantees that either:

1) $M_{1} \& L_{2}$ are simulatenously gapped (L_{1} condensed, L_{2} gapped - trivial insulator)
2) $M_{1} \& L_{2}$ are simulatenously condensed (L_{1} gapped, L_{2} condensed - SPT insulator)
3) $M_{1} \& L_{2}$ are simulatenously at transition - critical or $1^{\text {st }}$-order (direct trivial - SPT transition)

Just self-duality does NOT correspond to criticality but guarantees that once the transition is found, both L_{1} and L_{2} are simultaneously "critical" is there an "emergent interchange symmetry" between L_{1} and L_{2} ?

SPT/SET phases of bosons in (2+1)D in four lines

(Chen et al; Lu \& Vishwanath; Senthil \& Levin; Geraedts \& OIM)

"Duality" is constrained analog of

$$
\sum_{X=-\infty}^{\infty}=\int_{-\infty}^{\infty} d x \sum_{p=-\infty}^{\infty} e^{-i 2 \pi p x}
$$

Can argue using precise relation to Villain model (Peskin; Halperin \& Dasgupta) that Q's can be thought of as vortices

Phase diagram

$$
S_{Q J}=\sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{2\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\sum_{R} \frac{\left|\overrightarrow{\mathcal{J}}_{2}(R)-\eta \overrightarrow{\mathcal{Q}}_{1}(R)\right|^{2}}{2 \lambda_{2}}
$$

Cuts at fixed η :

Cut along the $\lambda_{1}=\lambda_{2}$ line:

Conventional Mott insulator via vortices

Mott insulator <---> condensate of vortices:

gapped bosons

Excitations in the Mott insulator:

No gapless modes <---> "Higgs mechanism"
Original boson <---> vortex in the vortex field Ψ_{v}. N.B.: AbrikosovNielsen vortices in the Higgs model have short-ranged interactions

Charge quantization <---> flux quantization for A-N vortices in Ψ_{v} Charge 1 <---> 2π flux of $a==$ "unit flux" " $h_{\text {vort }}$ " $\mathrm{C}_{\text {vort }}$ "/" $\mathrm{q}_{\text {vort }}$ "

Z_{2} fractionalized Mott insulator via vortices

(Balents, Fisher, and Nayak; Senthil and Fisher)

Usefulness of dual language: simple states in terms of vortices can be non-trivial states in terms of original bosons!

\underline{Z}_{2} fractionalized phase:

condensed pairs of vortices

* Featureless Mott insulator (no gapless modes, no order)
* Charged excitations <---> vortices in $\Psi_{\text {pair-vort }} \sim\left(\Psi_{v}\right)^{2}$
* Charge quantum <---> new flux quant. " $h_{\text {vort }} " c_{\text {vort }} " /\left(2 " q_{\text {vort }} "\right)=1 / 2$!
* Gapped "vison" <---> unpaired vortex
* Chargon and vison have mutual π statistics

Vortex thinking in Fractional Quantum Hall

Fermions at $v=1 / \mathrm{m}$, with $\mathrm{m}=$ odd.
Flux attachment:

$$
\Psi_{\mathrm{ferm}}=\left(\prod_{i<j} \frac{z_{i}-z_{j}}{\left|z_{i}-z_{j}\right|}\right)^{m} \Psi_{\mathrm{bos}}
$$

---> Chern-Simons field theory;

- feels like we are attaching m vortices and condensing vortexcharge composites;
- vortex language is used often, e.g., when discussing excitations; in Lee-Fisher hierarchy construction; and Wen's K-matrix formulation
N.B.: Difficult to put C-S theory on a lattice/make precise (~cannot simultaneously work with discrete particles and discrete vortices). Our $\mathrm{U}(1) \mathrm{xU}(1)$ systems allow solution without using flux attachment and avoid any such difficulties - everything can be made precise.

Bosons with $\mathrm{U}(1) \mathrm{xU}(1)$ symmetry

- two species of separately conserved bosons

Particle picture:

$b_{1} \quad b_{2}$

Vortex picture:

$v_{1} \quad v_{2}$

Mixed picture:

$$
\begin{array}{ll}
& \\
v_{1} & b_{2}
\end{array}
$$

Conventional Mott insulator
gapped bosons
0
\circ

proliferated vortices

Integer quantum Hall insulator $\sigma^{12}{ }_{x y}=2$

 (Chen et. al.; Lu and Vishwanath; Senthil and Levin)Mixed picture using v_{1} and b_{2} is particularly convenient: condensation of bound states of v_{1} and b_{2}

mismatch at the boundary -> edge states!

Integer quantum Hall insulator $\sigma^{12} x=2 n$ (Chen et. al.; Lu and Vishwanath; Senthil and Levin)
condensation of bound states of v_{1} and $\left(b_{2}\right)^{n}$

Fractional quantum Hall insulator $\sigma^{12} x y=2 c / d$

condensation of bound states of $\left(v_{1}\right)^{d}$ and $\left(b_{2}\right)^{c}$

-> excitations with fractional charges (1/d, 0) and ($0,1 / \mathrm{d}$), with mutual statistics $2 \pi b / d$, where $a d-b c=1$

Engineering condensation of bound states of

 v_{1} and $b_{2}$$$
S\left[\vec{Q}_{1}, \vec{J}_{2}\right]=\sum_{k} \frac{1}{2} \frac{(2 \pi)^{2} \lambda_{1}}{k^{2}}\left|\vec{Q}_{1}(k)\right|^{2}+\sum_{R} \frac{1}{2 \lambda_{2}}\left|\vec{Q}_{1}-\vec{J}_{2}\right|^{2}
$$

small λ_{2} : want $Q_{1}=J_{2}--->$ "binding" to form $\left(Q_{1}, J_{2}\right)=(1,1)$ small λ_{1} : little additional cost for any "bound" configurations
---> "condensation" of bound states (to be precisely defined)

Engineering condensation of bound states of

$$
\begin{gathered}
\left(v_{1}\right)^{\mathrm{d}} \text { and }\left(\mathrm{b}_{2}\right)^{\mathrm{c}} \\
S\left[\vec{Q}_{1}, \vec{J}_{2}\right]=\sum_{k} \frac{1}{2} \frac{(2 \pi)^{2} \lambda_{1}}{k^{2}}\left|\vec{Q}_{1}(k)\right|^{2}+\sum \frac{1}{2 \lambda_{2} d^{2}}\left|c \vec{Q}_{1}-d \vec{J}_{2}\right|^{2}
\end{gathered}
$$

small λ_{1} and $\lambda_{2}--->$ condensation of bound states $\left(Q_{1}, J_{2}\right)=(d, c)$
Precise definition of such bound state condensation:

* Change of variables to new independent loop variables
$Q_{1}, J_{2}->F_{1}=a^{*} Q_{1}-b^{*} J_{2}$,

$$
\mathrm{G}_{2}=\mathrm{c}^{*} \mathrm{Q}_{1}-\mathrm{d} * \mathrm{~J}_{2} \text {-- "modular transformation"-- } \mathrm{SL}(2, \mathrm{Z}) \text { matrix }
$$

- ok if (a, b, c, d) are integers satisfying ad - bc $=1$.
* Expect G_{2} gapped and F_{1} condensed -> dual G_{1} gapped; duality transform $\mathrm{F}_{1}, \mathrm{G}_{2}->\mathrm{G}_{1}, \mathrm{G}_{2}$ produces action

$$
S\left[\vec{G}_{1}, \vec{G}_{2}\right]=\sum\left[\frac{1}{2 \lambda_{1} d^{2}} \vec{G}_{1}^{2}+\frac{1}{2 \lambda_{2} d^{2}} \vec{G}_{2}^{2}\right]+i \sum \frac{2 \pi b}{d} \vec{G}_{1} \cdot \vec{a}_{G 2}
$$

$\mathrm{G}_{1}, \mathrm{G}_{2}$ describe gapped excitations with mutual statistics $2 \pi \mathrm{~b} / \mathrm{d}$

Reverse-engineering physical models

* Conserved integer-valued currents residing on links of inter-penetrating 3D cubic lattices dual to each other
* Euclidean action with local interactions:

$$
\begin{aligned}
S & =\frac{1}{2} \sum_{r, r^{\prime}} v_{1}\left(r-r^{\prime}\right) \vec{J}_{1}(r) \cdot \vec{J}_{1}\left(r^{\prime}\right)+\frac{1}{2} \sum_{R, R^{\prime}} v_{2}\left(R-R^{\prime}\right) \vec{J}_{2}(R) \cdot \vec{J}_{2}\left(R^{\prime}\right) \\
& +i \sum_{R, R^{\prime}} w\left(R-R^{\prime}\right)\left[\vec{\nabla} \times \vec{J}_{1}\right](R) \cdot \vec{J}_{2}\left(R^{\prime}\right) \quad \begin{array}{l}
\text { Is this action unitary? } \\
\text { YES - obtainable from } \\
\text { a local Hamiltonian! }
\end{array}
\end{aligned}
$$

* Specific short-ranged "potentials" (reverse-engineered):

$$
v_{1 / 2}(k)=\frac{\lambda_{2 / 1}}{\lambda_{1} \lambda_{2}+\frac{c^{2}|\vec{k}|^{2}}{d^{2}(2 \pi)^{2}}}, \quad w(k)=\frac{-c}{2 \pi d} \frac{1}{\lambda_{1} \lambda_{2}+\frac{c^{2}|\vec{k}|^{2}}{d^{2}(2 \pi)^{2}}}
$$

- upon duality on one species $\mathrm{J}_{1}, \mathrm{~J}_{2}->\mathrm{Q}_{1}, \mathrm{~J}_{2}$ reproduce precisely the "binding" action $\mathrm{S}\left[\mathrm{Q}_{1}, \mathrm{~J}_{2}\right]$

Solution of the physical model; properties

$$
S\left[\vec{J}_{1}, \vec{J}_{2}\right]=S_{\mathrm{v} 1-\mathrm{v} 2-\mathrm{w}}\left[\vec{J}_{1}, \vec{J}_{2}\right]+i \sum \vec{J}_{1} \cdot \vec{A}_{1}^{\mathrm{ext}}+i \sum \vec{J}_{2} \cdot \vec{A}_{2}^{\mathrm{ext}}
$$

Sequence of transformations:

1) duality on one species: $J_{1}, J_{2}->Q_{1}, J_{2}$
2) change of variables: $Q_{1}, J_{2}->F_{1}=a * Q_{1}-b^{*} J_{2}$,

$$
\mathrm{G}_{2}=\mathrm{c}^{*} \mathrm{Q}_{1}-\mathrm{d} * \mathrm{~J}_{2}
$$

- ok if (a, b, c, d) are integers satisfying $a d-b c=1$ (modular matrix) 3) duality on one species: $F_{1}, G_{2}->G_{1}, G_{2}$

$$
\begin{aligned}
S\left[\vec{G}_{1}, \vec{G}_{2}\right] & =\sum\left[\frac{1}{2 \lambda_{1} d^{2}} \vec{G}_{1}^{2}+\frac{1}{2 \lambda_{2} d^{2}} \vec{G}_{2}^{2}\right]+i \sum \frac{2 \pi b}{d} \vec{G}_{1} \cdot \vec{a}_{G 2} \\
& -i \sum \frac{c}{2 \pi d}\left[\vec{\nabla} \times \vec{A}_{1}^{\text {ext }}\right] \cdot \vec{A}_{2}^{\text {ext }}-i \sum \frac{1}{d}\left[\vec{G}_{1} \cdot \vec{A}_{1}^{\text {ext }}+\vec{G}_{2} \cdot \vec{A}_{2}^{\text {ext }}\right]
\end{aligned}
$$

* Small $\lambda_{1}, \lambda_{2}->$ gapped G_{1}, G_{2}; can read off quasiparticle charges $1 / d$ and mutual statistics $2 \pi \mathrm{~b} / \mathrm{d}$, as well as "background" $\sigma^{12} \mathrm{xy}=2 \mathrm{c} / \mathrm{d}$ * gapped $\mathrm{G}_{2}<-->\mathrm{G}_{2} \sim 0$; gapped $\mathrm{G}_{1}<-->$ condensed F_{1} $-->$ condensate of bound states of the type $\left(Q_{1}, J_{2}\right)=(d, c)$

Sign-free reformulation \& Monte Carlo study

* Physical boson action

$$
\begin{aligned}
S & =\frac{1}{2} \sum_{r, r^{\prime}} v_{1}\left(r-r^{\prime}\right) \vec{J}_{1}(r) \cdot \vec{J}_{1}\left(r^{\prime}\right)+\frac{1}{2} \sum_{R, R^{\prime}} v_{2}\left(R-R^{\prime}\right) \vec{J}_{2}(R) \cdot \vec{J}_{2}\left(R^{\prime}\right) \\
& +i \sum_{R, R^{\prime}} w\left(R-R^{\prime}\right)\left[\vec{\nabla} \times \vec{J}_{1}\right](R) \cdot \vec{J}_{2}\left(R^{\prime}\right)
\end{aligned}
$$

-- complex-valued -- sign problem in Monte Carlo!

* Action in $\mathrm{Q}_{1}-\mathrm{J}_{2}$ variables

$$
S\left[\vec{Q}_{1}, \vec{J}_{2}\right]=\sum_{k} \frac{1}{2} \frac{(2 \pi)^{2} \lambda_{1}}{k^{2}}\left|\vec{Q}_{1}(k)\right|^{2}+\sum \frac{1}{2 \lambda_{2} d^{2}}\left|c \vec{Q}_{1}-d \vec{J}_{2}\right|^{2}
$$

-- real-valued - can be studied in Monte Carlo!

* Several exact reformulations that can be efficiently simulated Applications: - phase diagrams and phase transitions
- study of edge states

Monte Carlo study of broader phase diagrams and transitions

Phase diagram for the model with $c=1, d=3$

-- can study phase transition between FQH and trivial insulator; field theory - condensation of quasiparticles with mutual statistics:
$S=\int_{\mathbb{R}^{3}}\left[\left|\left(\vec{\nabla}-i \vec{\alpha}_{1}\right) \Psi_{1}\right|^{2}+\left|\left(\vec{\nabla}-i \vec{\alpha}_{2}\right) \Psi_{2}\right|^{2}+m\left(\left|\Psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}\right)+\frac{i}{\theta} \vec{\alpha}_{1} \cdot\left(\vec{\nabla} \times \vec{\alpha}_{2}\right)\right]$

Monte Carlo study of edge states

Evidence for gapless edge states

chord distance
(also studied $\eta=2$ and $\eta=1 / 3$ edges)
-- power-law correlations with oppositely trending exponents for $\mathrm{e}^{\mathrm{i} \mathrm{p}_{1}}$ and $\mathrm{e}^{\mathrm{i} \phi 2}$

-- consistent with phenomenological edge theory from the K-matrix theory

$$
\begin{aligned}
K & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Longrightarrow \\
S & =\int d x d \tau \frac{i}{2 \pi} \partial_{\tau} \varphi_{1} \partial_{x} \varphi_{2}+S_{\mathrm{int}}
\end{aligned}
$$

Highlights and future directions

1) Exact realization of Integer/Fractional Quantum Hall phases of bosons - SPT/SET protected by charge conservation

- Physics: binding of vortices and charges and condensation of composite objects
- Mathematics: generalization of duality to arbitrary modular transformations, giving action in terms of gapped quasiparticles of the phase

2) Sign-free reformulations that can be studied in Monte Carlo

- quantitative phase diagrams of our models
- direct observation of gapless edge states

3) Extensions: other interesting models for SPT/SET phases, similar mechanisms for other symmetries/dimensions:

- $Z_{N} \times Z_{N}$ in 1d: composites of domain walls and charges
- $\mathrm{SO}(3) \times \mathrm{U}(1)$ in 3 d : composites of hedgehogs and charges (ideas in Vishwanath and Senthil)
- sign-free reformulations of interesting TQFTs?

Robustness \& derivation of K-matrix theory

$$
S\left[\vec{J}_{1}, \vec{J}_{2}\right]=S_{\text {short-range }}\left[\vec{J}_{1}, \vec{J}_{2}\right]+i \sum \vec{J}_{1} \cdot \vec{A}_{1}^{\text {ext }}+i \sum \vec{J}_{2} \cdot \vec{A}_{2}^{\text {ext }}
$$

Sequence of transformations:

1) duality on one species: $J_{1}, J_{2}->Q_{1}, J_{2}$

$$
S_{1}=S_{\text {s.r. }}+i \sum\left[\frac{\vec{\nabla} \times \vec{\beta}}{2 \pi} \cdot \vec{A}_{1}^{\text {ext }}+\vec{Q}_{1} \cdot \vec{\beta}+\vec{J}_{2} \cdot \vec{A}_{2}^{\text {ext }}\right]
$$

2) change of vars: $Q_{1}, J_{2}->F_{1}=a^{*} Q_{1}-b * J_{2},<->Q_{1}=d * F_{1}-b * G_{2}$

$$
\mathrm{G}_{2}=\mathrm{c}^{*} \mathrm{Q}_{1}-\mathrm{d}^{*} \mathrm{~J}_{2} \quad \mathrm{~J}_{2}=\mathrm{c}^{*} \mathrm{~F}_{1}-\mathrm{a}^{*} \mathrm{G}_{2}
$$

$$
S_{2}=S_{\text {s.r. }}+i \sum\left[\frac{\vec{\nabla} \times \vec{\beta}}{2 \pi} \cdot \vec{A}_{1}^{\text {ext }}+\vec{F}_{1} \cdot\left(d \vec{\beta}+c \vec{A}_{2}^{\text {ext }}\right)-\vec{G}_{2} \cdot\left(b \vec{\beta}+a \vec{A}_{2}^{\text {ext }}\right)\right]
$$

3) duality on one species: $F_{1}, G_{2}->G_{1}, G_{2}$

$$
\begin{aligned}
S_{3}=S_{\text {s.r. }} & +i \sum\left[d \frac{\vec{\nabla} \times \vec{\gamma}}{2 \pi} \cdot \vec{\beta}+\frac{\vec{\nabla} \times \vec{\beta}}{2 \pi} \cdot \vec{A}_{1}^{\text {ext }}+c \frac{\vec{\nabla} \times \vec{\gamma}}{2 \pi} \cdot \vec{A}_{2}^{\text {ext }}\right] \\
& +i \sum\left[\vec{G}_{1} \cdot \vec{\gamma}-\vec{G}_{2} \cdot\left(b \vec{\beta}+a \vec{A}_{2}^{\text {ext }}\right)\right]
\end{aligned}
$$

- K-matrix-like theory with $K=\left(\begin{array}{ll}0 & d \\ d & 0\end{array}\right)$ - all properties follow!

Hamiltonian formulation

* conserved bosons of type-1 residing on one square lattice and of type-2 on the dual lattice * harmonic oscillators $\{\mathrm{X}, \mathrm{P}\}$ on the direct and dual link crossings, with X acting as "gauge fields" for the type-1 bosons and P as "gauge fields" for the type-2 bosons:

$$
\hat{\alpha}_{1 \mu}=\hat{\chi}_{\mu}, \quad \hat{\alpha}_{2 \mu}=\epsilon_{\mu \nu} \hat{\pi}_{\nu}
$$

$$
\begin{aligned}
& H_{\mathrm{bos}+\mathrm{osc}}=-\sum_{\mathbf{r}, j} t \cos \left[\nabla_{j} \hat{\phi}_{1}(\mathbf{r})-e \hat{\alpha}_{1 j}(\mathbf{r})\right]-\sum_{\mathbf{R}, j} t \cos \left[\nabla_{j} \hat{\phi}_{2}(\mathbf{R})-e \hat{\alpha}_{2 j}(\mathbf{R})\right] \\
& +\sum_{\mathbf{r}} u\left[\hat{n}_{1}(\mathbf{r})+g\left(\nabla \wedge \hat{\boldsymbol{\alpha}}_{2}\right)(\mathbf{r})\right]^{2}+\sum_{\mathbf{R}} u\left[\hat{n}_{2}(\mathbf{R})+g\left(\boldsymbol{\nabla} \wedge \hat{\boldsymbol{\alpha}}_{1}\right)(\mathbf{R})\right]^{2}+\sum_{\ell}\left[\frac{\kappa \hat{\chi}_{\ell}^{2}}{2}+\frac{\hat{\pi}_{\ell}^{2}}{2 m}\right]
\end{aligned}
$$

$\mathrm{e} / \mathrm{g}=2 \pi \mathrm{~d} / \mathrm{c}$-> Euclidean path integral gives precisely our (2+1)d loop models!
Physics: oscillators adjust so that a type-1 boson induces a flux of strength $2 \pi \mathrm{~d} / \mathrm{c}$ seen by the type-2 bosons. Abrikosov-Nielsen vortex physics: c type-1 bosons bind d type-2 vortices --- "dynamical flux attachment"

Monte Carlo study of edge states

$S=\frac{1}{2} \sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{\left|\vec{k}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\frac{1}{2} \sum_{R} \frac{1}{\lambda_{2}}\left|\overrightarrow{\mathcal{J}}_{2}(R)-\eta(R) \overrightarrow{\mathcal{Q}}_{1}(R)\right|^{2}$
$\eta=2$ edge

chord distance
for this specific edge, find power-law correlations for b_{1} and "paired" $\left(b_{2}\right)^{2}$, while b_{2} has only exponentially decaying correlations (thus,can have two distinct "edge phases")

Monte Carlo study of edge states

$$
\begin{gathered}
S=\frac{1}{2} \sum_{k} \frac{(2 \pi)^{2} \lambda_{1}}{\left|\vec{f}_{k}\right|^{2}}\left|\overrightarrow{\mathcal{Q}}_{1}(k)\right|^{2}+\frac{1}{2} \sum_{R} \frac{1}{\lambda_{2}}\left|\overrightarrow{\mathcal{J}}_{2}(R)-\eta(R) \overrightarrow{\mathcal{Q}}_{1}(R)\right|^{2} \\
\eta=\frac{1}{3} \text { edge }
\end{gathered}
$$

chord distance

$$
\begin{aligned}
K=\left(\begin{array}{ll}
0 & d \\
d & 0
\end{array}\right) \Longrightarrow & S=\int d x d \tau \frac{i d}{2 \pi} \partial_{\tau} \varphi_{1} \partial_{x} \varphi_{2}+S_{\mathrm{int}} \\
b_{a} & \sim e^{i d \varphi_{a}}, \quad \Delta\left[b_{1}\right] \Delta\left[b_{2}\right]=d^{2} / 4
\end{aligned}
$$

Field theories for the phases and transitions

* Found appropriate gapped variables for each phase -> "longwavelength field theory" for each phase and also for transitions to proximate phases
* Most transitions are 3D XY in appropriate variables, except the multi-critical points
* Transition (0) -> (IV):

numerics is more consistent with a direct (0)-(IV) transition

If continuous, the field theory for this transition is:

$$
\begin{aligned}
S & =\int_{\mathbb{R}^{3}}\left[\left|\left(\vec{\nabla}-i \vec{\alpha}_{q 1}\right) \Psi_{J 1}\right|^{2}+\left|\left(\vec{\nabla}-i \vec{\alpha}_{q 2}\right) \Psi_{J 2}\right|^{2}+m\left(\left|\Psi_{J 1}\right|^{2}+\left|\Psi_{J 2}\right|^{2}\right)\right] \\
& +\int_{\mathbb{R}^{3}}\left[\left(\vec{\nabla} \times \vec{\alpha}_{q 1}\right)^{2}+\left(\vec{\nabla} \times \vec{\alpha}_{q 2}\right)^{2}-\frac{i}{\theta} \vec{\alpha}_{q 1} \cdot\left(\vec{\nabla} \times \vec{\alpha}_{q 2}\right)\right] \quad \begin{array}{l}
\text { (N.B.: can drop } \\
\text { Maxwell terms) }
\end{array}
\end{aligned}
$$

Precise "duality" transform on a 3D lattice

"hydrodynamic" real-
conserved integer-valued conserved integer-valued 3-currents of bosons on a direct cubic lattice 3 -currents of vortices on a valued representation of boson 3-current

$$
Z=\sum_{\vec{J}, \vec{\nabla} \cdot \vec{J}=0} e^{-\frac{1}{2} \sum_{k} v(k)|\vec{J}(k)|^{2}}=\sum_{\vec{Q}, \vec{\nabla} \cdot \vec{Q}=0} e^{-\frac{1}{2} \sum_{k} \frac{(2 \pi)^{2}}{k^{2} v(k)}|\vec{Q}(k)|^{2}}
$$

Schematic continuum theories:
$\mathcal{L}_{\text {bos }}=|\vec{\nabla} \Psi|^{2}+m|\Psi|^{2}+u|\Psi|^{4} \quad---\phi^{4}$ field theory
$\mathcal{L}_{\text {vort }}=\left|(\vec{\nabla}-i \vec{a}) \Psi_{v}\right|^{2}+m_{v}\left|\Psi_{v}\right|^{2}+u_{v}\left|\Psi_{v}\right|^{4}+\kappa(\vec{\nabla} \times \vec{a})^{2}--$ Higgs model

