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* Review of lattice (2+1)d boson-vortex duality and some successes

* Realization of direct transition between trivial and SPT (integer 
quantum Hall) phases of bosons with U(1)xU(1) symmetry
  - Hamiltonian formulation, Euclidean action model, phase diagrams and 
SPT & SET phases
  - direct transition from trivial phase to Integer Quantum Hall phase
  - symmetries of the model
  - special non-local particle-hole-like symmetry
  - relation to exactly-self-dual easy-plane NCCP1 model
  - variations

* Conclusions and future directions



 
Particle picture:
worldlines of bosons

Superfluid phase:

Mott insulator phase:

Thinking in terms of vortices in (2+1)d

Dual picture in (2+1)d: 
worldlines of vortices

condensed bosons (proliferated worldlines)



gapped vortices (small worldlines)

gapped bosons proliferated vortices

b 



 
Successes of thinking in terms of vortices

* Not as successful for describing the phase superfluid-insulator 
transition in (2+1)d, BUT ...

* Very successful for describing non-trivial insulating phases, including 
with topological order
  - Fractional Quantum Hall systems (“vortex” thinking implicit or explicit; 
e.g. Chern-Simons flux attachment ~ “vortex attachment”)
  - Z

2
 fractionalized phase from pair-vortex condensation

  - Insulators with intricate CDW or VBS order from more complex vortex 
condensations with non-zero wavevectors

* Recent successes in symmetry-protected topological phases:
  - SPT (Integer Quantum Hall effect) phases of bosons
  - SET (fractionalized cousins of SPT) phases of bosons



 
Precise “duality” transform on a (2+1)D lattice

(Peskin; Halperin & Dasgupta; Fisher & Lee)

conserved integer-valued 
3-currents of bosons on a 
direct cubic lattice

conserved integer-valued 
3-currents of vortices on a 
dual cubic lattice

"hydrodynamic" real-
valued representation 
of the boson 3-current

Short-range-interacting bosons – “4” theory

Long-range-interacting vortices – “Higgs model”



 
SPT/SET phases of bosons in (2+1)D in four lines

(Chen et al; Lu & Vishwanath; Senthil & Levin; Geraedts & OIM)

Two species of bosons [U(1)xU(1)]; use dual description for species-1: 

and direct description for species-2:

Consider phase where individual 
1,vort

, 
2,bos

 are gapped, while the 

composite  ~ (
1,vort

)d (
2,bos

)c  condensed 

condensed:

- integer (SPT) Quantum Hall effectof bosons if d=1
- fractional (SET) if d>1



 
Exact lattice realization of SPT and SET phases of 

bosons with U(1)xU(1) symmetry

Setup: Two separately conserved species of bosons [U(1)xU(1)];
at integer density (“relativistic”; enforced by unitary particle-hole)

Hamiltonian formulation (Geraedts & OIM 2013):

* Species-1: quantum rotors on “direct” lattice r

* Species-2: quantum rotors on “dual” lattice R

* Harmonic oscillators at intersection points of 
direct and dual lattice links

            will affect hopping of the species-1 
(species-2) as if they were “gauge fields”:
Note, however, that they are regular oscillators 
with finite “gap” and not gauge fields!



 
Hamiltonian formulation & Euclidean path integral

← ties “flux” of 
1
 to 

vorticity in 
1

← ties “flux” of 
1
 to 

boson number n
2

← oscillators with finite “gap”

Euclidean space-time path integral (upon integrating out oscillator fields):

engineer binding of 
vortices and bosons; 
composition 
controlled by



 

Mixed vortex-boson representation & 
SPT via condensation of vortex-boson bound state

Dualize J
1
 → Q

1
 while leaving J

2
 untouched (simple for very large h

1,2
):

=0 – two species decouple
          [v

1/2
(k)=1/

1/2
, w=0]

=1 – identical phase 
transition lines to =0:
J
2
' = Q

1
 -

 
J
2
 and Q

1
 decouple

gapped J
2
' - condensate of 

Q
1
=J

2 
bound states



 
Simple fractional =1/d (e.g. =1/3)

Very small 
1/2

< 
c
/9

- condensate of 
Q

1
=3J

2
bound states 

Intermediate


c
/9 < 

1/2
< 

c

- condensate of 
individual Q

1

(& gapped J
2
) 



 

More complex rational example: =2/5 - hierarchy 
of fractionalized phases

Intermediate


c
/4 < 

1/2
< 

c

- condensate of 
individual Q

1

(& gapped J
2
) 

Small to Intermediate 
c
/25 < 

1/2
< 

c
/4

- condensate of (Q
1
,J

2
)=(2,1) bound states

Very small 
1/2

< 
c
/25

- condensate of 
(Q

1
,J

2
)=(5,2)

 
bound states 



 
Phase diagram: cuts at fixed 

* For all , the trivial insulator persists in the window 
c
/4<

1/2
<

c 
(topo 

phase requires at least Q
1
=2), but is compressed towards 

1
=

2 
line

* 1/2 – similar to 1/d (e.g., there is topo phase at small 
1/2

) except 

that in our model the trivial phase collapses to a line, which we found to be 
1st-order transition (Geraedts and OIM 2011)
* >1/2 - phase diagrams can be obtained from 1/2

 
using change of 

vars. J
2
' = Q

1
-J

2
. Under this J

2
-Q

1
= (1-Q

1
- J

2
' – relates models at  and 

'=1-. This relates phases with physical Hall conductivities 
xy

 and 2-
xy

 



 

Careful look at symmetries: 
what allowed exact knowledge of the transition?

* Unitary particle-hole C: J
s
 → -J

s
(fixes to “integer density”)

* Anti-unitary T
-+

: J

 → -J


, J


 → J


, i->-i (NOT usual time reversal; allows non-zero 

xy
12; 

allows Monte Carlo simulations) 
* Species interchange symm. if v

1
=v

2
 (smth we can require-need for direct transition)

* Property of “invariance” under  → 1- J
2 
→ Q

1
-J

2
 – NOT a symmetry as it 

relates models with different (reminiscent of particle-hole transformation 
of electrons in the lowest Landau level).
   - At  =1/2, it can be viewed as a symmetry of the model and is 
responsible for putting the model exactly at the transition!
   - This transformation is particle-hole-like (“-” in front of J

2
), is simple to 

state in S
QJ

 but (nearly) impossible in the boson vars S
JJ
– “non-local”? 

Expect that it is anti-unitary since Q
1
 is unchanged.  

Mixed vortex-boson vars:



 

Non-local particle-hole-like symmetry in the 
Hamiltonian formulation?

The current loop model that gave “nice” S
QJ
 with nice “particle-hole-like” 

transformation was obtained in the limit of very large (infinite) h
1,2

← specialized to =1/2;
the two terms commute

Very large (infinite) h
1,2

 → define restricted Hilbert space by

In this restricted Hilbert space

The u-terms have the form

– invariant under 

Resembles PH symmetry of electrons in the LLL (very large h
1,2

 is 

“quenching” the boson kinetic energy) but works only at =1/2



 

Relation of =1/2 to exactly-self-dual “easy-plane 
NCCP1”

Change of vars in the partition sum:

Long-range v
+
(k)~1/k2 & short-range v

-
(k) – the structure is qualitatively the 

same as EP-NCCP1 with (Euclidean) Lagrangian (OIM & Vishwanath; Senthil et al)

* Original boson unitary particle-hole C: L
s 
→ -L

s

* Original boson anti-unitary T
-+

: L
s
 → L

s
, i->-i 

* Original  =1/2 produced S
LL

 symmetric under L
1
↔L

2
 interchange;  

invariance of S
QJ
 under J

2
→Q

1
-J

2
, Q

1
→Q

1
 equivalent to symm. of S

LL
 under L

1
↔L

2



 
Relation to exactly-self-dual “easy-plane NCCP1”

Duality transformation from L
1
, L

2
 to M

1
, M

2 
gives

* Original boson interchange symmetry 
1
=

2
 → exact EP-NCCP1 self-duality. 

Our model at =1/2 & 
1
=

2 
<-> exactly-self-dual EP-NCCP1!  

short-range if v
+
(k) is long-range long-range if v

-
(k) is short-range

S
MM

 theory has qualitatively similar structure as S
LL

 up to change of sign of 

one of the currents (OIM & Vishwanath).  “Exact self-duality” in the sense    
                              
                               S

MM
[M

1
, M

2
] = S

LL
[M

2
, -M

1
] 

can be achieved if 
                                v

+
(k) v

-
(k) = 2/|k|2   



 
Future directions

* The original model that was the simplest to simulate showed first-order 
transition.  However, whole class of models with v

+
(k) v

-
(k) = 2/|k|2 are 

also exactly at the transition – harder but worthwhile to study in Monte 
Carlo.
 - Recent QMC studies of bosonic SPT-trivial transition and easy-plane 
VBS-superfluid transition find 2nd-order transitions(Slagle, You, & Xu; Qi et al)
 - EP NCCP1 model is also related to exactly-self-dual fermionic N

f
=2 QED3 

(Wang et al, Benini et al, Mross et al)

* Models with direct transition but without non-local particle-hole symm. – 
“emergent interchange symmetry” between  L

1
 and L

2 
in the NCCP1? ~ 

“emergent non-local particle-hole symm” at the trivial-BIQHE transition?

* (Non-relativistic) Bosons at finite density in external field - can realize 
SPT & SET phases in such models as well; strong constraints on allowed 


xy
.  He et al: direct transition between 

xy
=2 and 

xy
=-2 & proposal of 

(NCCP1)2 criticality. So far, our models go through intermediate phases.

* Lattice duality in the NCCP1 model without assuming easy-plane?



 
Variation: are local symmetries enough for direct 

transition?
(Probably) YES – motivated by observation of direct bosonic trivial-SPT 
transition in the Hubbard on bilayer honeycomb (Slagle, You, & Xu; Qi et 
al. - different model with many symmetries)

In our models, if v
1
=v

2
, then by the boson interchange symmetry we 

cannot pass through phase (J
1
 superfluid, J

2 
insulating) or  (J

1
 insulating, J

2 

superfluid) – except their meeting line (coexistence or 2nd-order).  It is 
then natural to expect direct transition from trivial to BIQH.  Without the 
non-local symmetry we do not know the exact critical point, but can 
search numerically.

Question: What does this correspond to in the variables that gave us 
EP-NCCP1 model?



 

Variation: are local symmetries enough for direct 
transition?

Original species interchange symmetry if v
1
=v

2
 → exact self-duality in the 

sense  
                           S

MM
[M

1
, M

2
] = S

LL
[M

2
, -M

1
]  

Without the non-local particle-hole symmetry, the S
LL

 is not symmetric 

under L
1
↔L

2
 interchange – NOT the original EP NCCP1 model.  

Nevertheless, the above self-duality implies that energetics of M
1 
is 

identical to energetics of L
2 
and hence guarantees that either:

1) M
1 
& L

2 
are simulatenously gapped (L

1
 condensed, L

2 
gapped – trivial 

insulator) 
2) M

1 
& L

2
 are simulatenously condensed (L

1
 gapped, L

2
condensed – SPT 

insulator)
3) M

1 
& L

2
 are simulatenously at transition – critical or 1st-order (direct 

trivial – SPT transition)

Just self-duality does NOT correspond to criticality but guarantees that 
once the transition is found, both L

1
 and L

2 
are simultaneously “critical” - 

is there an “emergent interchange symmetry” between  L
1
 and L

2
?



 
SPT/SET phases of bosons in (2+1)D in four lines

(Chen et al; Lu & Vishwanath; Senthil & Levin; Geraedts & OIM)

xy=2

1

b2



 “Duality” is constrained analog of

Can argue using precise relation to Villain model (Peskin; Halperin & 
Dasgupta) that Q's can be thought of as vortices



 
Phase diagram

Cuts at fixed 

Cut along the 
1
=

2 
line:



 
Conventional Mott insulator via vortices

gapped bosons

No gapless modes <---> "Higgs mechanism”

Original boson <---> vortex in the vortex field v. N.B.: Abrikosov-
Nielsen vortices in the Higgs model have short-ranged interactions

Charge quantization <---> flux quantization for A-N vortices in v

Charge 1 <---> 2 flux of a == "unit flux" "hvort""cvort"/"qvort”

proliferated vortices

Excitations in the Mott insulator:

Mott insulator <---> condensate of vortices:



 
Usefulness of dual language: simple states in terms of vortices can 
be non-trivial states in terms of original bosons!

Z2 fractionalized phase:

Z2 fractionalized Mott insulator via vortices
 (Balents, Fisher, and Nayak; Senthil and Fisher)

condensed pairs of vortices

* Featureless Mott insulator (no gapless modes, no order)
* Charged excitations <---> vortices in pair-vort ~ (v)2

* Charge quantum <---> new flux quant. "hvort""cvort"/(2"qvort”) = 1/2!
* Gapped "vison" <---> unpaired vortex
* Chargon and vison have mutual  statistics

?



 
Vortex thinking in Fractional Quantum Hall

---> Chern-Simons field theory;
- feels like we are attaching m vortices and condensing vortex-
charge composites; 

- vortex language is used often, e.g., when discussing excitations; in 
Lee-Fisher hierarchy construction; and Wen's K-matrix formulation

N.B.: Difficult to put C-S theory on a lattice/make precise (~cannot 
simultaneously work with discrete particles and discrete vortices). 
Our U(1)xU(1) systems allow solution without using flux attachment 
and avoid any such difficulties – everything can be made precise.

Fermions at =1/m, with m=odd.
Flux attachment:



 
Bosons with U(1)xU(1) symmetry

Particle picture:

- two species of separately conserved bosons

b2 1

Vortex picture:

b1 2

Mixed picture:

1 b2

Conventional Mott insulator
gapped bosons proliferated vortices



 
Integer quantum Hall insulator 12

xy=2
(Chen et. al.; Lu and Vishwanath; Senthil and Levin)

Mixed picture using 1 and b2 is particularly convenient:
condensation of bound states of 1 and b2

mismatch at the boundary -> edge states!

xy=2 xy=0

1

b2



 

condensation of bound states of 1 and (b2)n

Integer quantum Hall insulator 12
xy=2n

(Chen et. al.; Lu and Vishwanath; Senthil and Levin)

xy=2*2

b2

1

xy=0



 
Fractional quantum Hall insulator 12

xy=2c/d

condensation of bound states of (1)d
 and (b2)c

-> excitations with fractional charges (1/d, 0) and (0, 1/d), with 
mutual statistics 2b/d, where ad – bc = 1

xy=2*1/3 xy=0

b2

1



 

Engineering condensation of bound states of
1 and b2

 

small 2: want Q1 = J2 ---> “binding” to form (Q1, J2) = (1, 1)
small 1: little additional cost for any “bound” configurations
 ---> “condensation” of bound states (to be precisely defined)

1

b2
costly, “gapped”

cheap, “proliferated”



 

Engineering condensation of bound states of 
(1)d

 and (b2)c 

Precise definition of such bound state condensation:
* Change of variables to new independent loop variables
   Q1, J2 ->  F1  = a*Q1 - b*J2, 
                  G2 = c*Q1 - d*J2   -- “modular transformation”-- SL(2,Z) matrix

  - ok if (a, b, c, d) are integers satisfying ad – bc =1. 

* Expect G2 gapped and F1 condensed -> dual G1 gapped;
   duality transform F1, G2 -> G1, G2 produces action 

small 1 and 2 ---> condensation of bound states (Q1, J2) = (d, c)

G1, G2 describe gapped excitations with mutual statistics 2b/d



 
* Conserved integer-valued currents residing 
on links of inter-penetrating 3D cubic lattices 
dual to each other

* Euclidean action with local interactions:

Reverse-engineering physical models

* Specific short-ranged “potentials” (reverse-engineered):

 - upon duality on one species J1, J2 -> Q1, J2 reproduce precisely 
the “binding” action S[Q1, J2]

Is this action unitary? 
YES – obtainable from 
a local Hamiltonian! 



 
Solution of the physical model; properties

Sequence of transformations:
1) duality on one species: J1, J2 -> Q1, J2
2) change of variables: Q1, J2 -> F1 = a*Q1 - b*J2, 
                                                   G2 = c*Q1 - d*J2;
- ok if (a, b, c, d) are integers satisfying ad – bc =1 (modular matrix) 
3) duality on one species: F1, G2 -> G1, G2 

* Small 1, 2 -> gapped G1, G2; can read off quasiparticle charges 
1/d and mutual statistics 2b/d, as well as "background" 12

xy=2c/d
* gapped G2 <--> G2 ~ 0; gapped G1 <--> condensed F1

--> condensate of bound states of the type (Q1, J2) = (d, c)



 
Sign-free reformulation & Monte Carlo study

* Physical boson action

* Action in Q1 – J2 variables

-- complex-valued -- sign problem in Monte Carlo!

-- real-valued – can be studied in Monte Carlo!

* Several exact reformulations that can be efficiently simulated
   Applications: - phase diagrams and phase transitions
                        - study of edge states



 
Monte Carlo study of broader phase 

diagrams and transitions
Phase diagram for the model with c=1, d=3

-- can study phase transition between FQH and trivial insulator;
field theory – condensation of quasiparticles with mutual statistics: 
 



 
Monte Carlo study of edge states



 
-- power-law correlations with 
oppositely trending exponents 
for ei1 and ei 

-- consistent with phenomenological 
edge theory from the K-matrix theory

Evidence for gapless edge states

(also studied =2 and =1/3 edges)



1) Exact realization of Integer/Fractional Quantum Hall phases of 
bosons - SPT/SET protected by charge conservation 

●  Physics: binding of vortices and charges and condensation of 
composite objects

●  Mathematics: generalization of duality to arbitrary modular 
transformations, giving action in terms of gapped quasi-
particles of the phase

2) Sign-free reformulations that can be studied in Monte Carlo 

●  quantitative phase diagrams of our models

●  direct observation of gapless edge states

3) Extensions: other interesting models for SPT/SET phases, 
similar mechanisms for other symmetries/dimensions:

●  ZNxZN in 1d: composites of domain walls and charges

–  SO(3)xU(1) in 3d: composites of hedgehogs and charges 
(ideas in Vishwanath and Senthil)

● sign-free reformulations of interesting TQFTs?

 
Highlights and future directions



 
Robustness & derivation of K-matrix theory

Sequence of transformations:
1) duality on one species: J1, J2 -> Q1, J2

2) change of vars: Q1, J2 -> F1 = a*Q1 - b*J2, <-> Q1 = d*F1 - b*G2

                                            G2 = c*Q1 - d*J2             J2  = c*F1 - a*G2

3) duality on one species: F1, G2 -> G1, G2

 - K-matrix-like theory with                     - all properties follow!



 
Hamiltonian formulation

e/g = 2d/c -> Euclidean path integral gives precisely our (2+1)d loop 
models!  
Physics: oscillators adjust so that a type-1 boson induces a flux of strength 
2d/c seen by the type-2 bosons.  Abrikosov-Nielsen vortex physics: 
c type-1 bosons bind d type-2 vortices --- "dynamical flux attachment”

* conserved bosons of type-1 residing on one 
square lattice and of type-2 on the dual lattice
* harmonic oscillators {X, P} on the direct and 
dual link crossings, with X acting as “gauge 
fields” for the type-1 bosons and P as “gauge 
fields” for the type-2 bosons:



 
Monte Carlo study of edge states

for this specific edge, find
power-law correlations for b1 
and “paired” (b2)2 , while b2 has 
only exponentially decaying 
correlations 
(thus,can have two distinct 
“edge phases”)



 
Monte Carlo study of edge states



If continuous, the field theory for this transition is:

* Found appropriate gapped variables for each phase -> “long-
wavelength field theory” for each phase and also for transitions 
to proximate phases
* Most transitions are 3D XY in appropriate variables, except the 
multi-critical points

* Transition (0) -> (IV): 

numerics is more consistent with a
direct (0)-(IV) transition

 (IV)

(N.B.: can drop 
Maxwell terms)

Field theories for the phases and transitions



 
Precise “duality” transform on a 3D lattice

conserved integer-valued 
3-currents of bosons on a 
direct cubic lattice

Schematic continuum theories:

conserved integer-valued 
3-currents of vortices on a 
dual cubic lattice

"hydrodynamic" real-
valued representation 
of boson 3-current

--- 4 field theory

--- Higgs model
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